Journal of Organometallic Chemistry, 161 (1978) C55–C58 © Elsevier Sequoia S.A., Lausanne -- Printed in The Netherlands

Preliminary communication

The Electronic Structure of Bis-(~-cyclobutadiene)nickel

Denis W. Clack and Keith D. Warren

Department of Chemistry, University College, Cardiff, Wales, United Kingdom. (Received September 13th, 1978)

Summary

INDO SCF MO calculations have been carried out for the title complex, and comparisons with similar results for π -cyclopentadienyl- π -cyclobutadienecobalt, and π -cyclopentadienyl- π -cyclopropenyl-nickel, are used to shed light on the mode of bonding of the cyclobutadiene ligand to the metal.

Although the asymmetrical complex, \mathfrak{T} -cyclopentadienyl- \hbar -cyclobutadiene--cobalt, CpCoCb, has been known for some time [1], there recently appeared [2] a report of the synthesis and characterisation of bis-(π -tetraphenylcyclobut-'-adiene)nickel, which represents the first symmetrical sandwich system involving the cyclobutadiene ligand. It therefore seemed appropriate to compare the results of our SCF MO calculations [3] on CpCoCb [4] with a similar treatment of the symmetrical parent system, bis-(π -cyclobutadiene)nickel, NiCb₂, and also to make comparisons with previous calculations [5] on the iso-electronic π -cyclopenta--dienyl- $\hat{\pi}$ -cyclopropenyl-nickel, CpNiCpr, for which the triphenyl-cyclopropenyl derivative is known [6].

The method and parameterisation were as described earlier [3], D_{4h} symmetry being assumed, and with a ring C-C distance of 1.40 Å the total energy was a minimum at a metal to ring-plane distance of 1.58 Å. The dominant interaction was as usual that between the metal 3d orbitals and the ligand \tilde{n} -combinations,

	MO	3a	X- Ligand	0 Ligand	н	48	⁴ р _{х,} у	4pz
a xy	^b 2g	92.00	8.00	-	-	-	_	-
a ^z 5	^a 1g	90.90	0.28	3.24	4.62	0.96	-	-
^d x ² -y ²	^b 1g	93•72	4.35	0.52	1。41	-	-	-
	eg	32 . 31	41.87	20.09	5 •71	-	-	-
	eu	-	71.87	18.54	0.12	-	9 . 46	-
	a _{2u}	-	94.83	2,23	0,20	-	-	2.7
	a _{1e}	3.24	68 . 59	14.87	11.83	1.45	-	-

Table I. Molecular Orbital Compositions for NiCb2.

Table II. Orbital Occupations for CpCoCb, NiCb2, and CpNiCpr

	ďЗоЭqЭ	NiCb	CpNiCpr
d _z 2	1.97	1.90	1.96
$d_{xz} + d_{yz}$	1.32	2.20	2,50
^d _x ² y ²	1,92	1.98	1 °94
d xy	1.96	2,00	1 ₅ 94
a ^x	7₀17	8.08	8.34
4s	0.56	0.49	0.60
4p	1.84	2.01	1 •89
C 🖝 (Cp)	2.86 (x5)	-	2 .85 (x 5)
۲ (م ² D) ۲ C	1.03 (x5)	-	1.02 (x5)
н (ср)	1.00 (x5)	-	1₀01 (x5)
C ~ (Cb)	2.81 (x4)	2.81 (x4)	-
с _ц (съ)	1.15 (x4)	1.10 (x4)	-
н (съ)	1.01 (x4)	1.00 (x4)	-
C م (Cpr)	-	-	2.84 (x3)
C ₃ (Cpr)	-	-	1°10 (x3)
H (Cpr)	-	-	0.97 (x3)

although there was some appreciable participation by the ligand σ -framework. For simplicity only the Ni 3d - ligand- π interactions are shown in the H^{core} diagram of the Figure.

As was found for CpCoCb [4], in which the cyclobutadiene ligand was the more strongly bound ring, the Cb rings in NiCb₂ are linked to the metal mostly via the mixing of the π -ligand $e_{(g)}$ level and the Ni $3d_{xz}$ and $3d_{yz}$ orbitals. Thus, in Table I we list the SCF orbital compositions of those MOs which are either mainly ligand- π or mainly metal 3d in character, and represent occupied levels, from which it is seen that the highest lying formally ligand level in fact contains more than 32 % of metal 3d contributions. Of the dominantly metal levels those of a_{1g} , b_{1g} , and b_{2g} symmetry (mostly d_z^2 , $d_x^2 - y^2$, and d_{xy} respectively) prove to be occupied, so that the system formally corresponds to a $3d^6$ configuration, i.e. Ni^{IV} 2Cb²⁻. Each of these levels is moreover virtually non-bonding, with the metal contributions all exceeding 90 %.

Figure. H^{core} Diagram for 3d - Ligand Interaction in NiCb₂° (Note : Only levels arising dominantly from the metal 3d - ligand- π interactions are shown, and levels of mainly σ -character, even with appreciable 3d contributions, are omitted.) The H^{core} stage of the calculations gives the energetic ordering of the mainly 3d levels as $d_x^2_y^2 \langle d_{xy} \langle d_z^2$, but at the SCF stage this becomes $d_x^2_y^2 \langle d_z^2 \langle d_{xy}$. However, Koopmans' theorem is unreliable for metal sandwic systems, and by calculation of the total energies for the neutral molecule and for the appropriate cations the definitive sequence was found to be $d_z^2 \sim d_x^2_y^2 \langle d_x^2_x \rangle$: the ionisation energy estimated for electron loss from the d_{xy} orbital was 9.14 eV., with loss from d_z^2 or $d_y^2_y^2$ requiring an extra 0.50 eV.

In Table II we compare the charge distributions calculated for NiCb₂, CpNiCpr, and CpCoCb, from which it is evident that NiCb₂ closely resembles the iso-electronic CpNiCpr. Most notably, the latter system, formally $3d^{10} - Cp^{-}Ni^{0}$ attains a d-orbital occupation of only 8.34 by virtue of the strong delocalisat of the d_{xz} and d_{yz} orbitals, whereas NiCb₂ - $3d^{6}$, Ni^{IV} 2Cb²⁻, actually acquires d-orbital electron density, again by virtue of the d_{xz}, d_{yz} - ligand mixing, th achieving a closely comparable occupation of 8.08. Moreover, in NiCb₂, the Cb ligand clearly behaves in a very similar manner to that found in CpCoCb [4], which we have shown formally constitutes a $3d^{6}$, Cp⁻Co^{III}Cb²⁻, species, although this is raised to $d^{7\cdot17}$ by appreciable d_{xz}, d_{yz} - ligand mixing. Consequently, for metal sandwich systems containing the cyclobutadiene ring it is probably conceptually simpler to formulate the ligand as Cb²⁻ (rather than Cb⁰), and thus to regard it as a strong π -donor. (For 2 Cb²⁻ rings at the same inter--nuclear separation as in NiCb₂, the calculated charges are C(σ) 2.80, C(π) 1.50, and H 1.20.)

References

- 1. R.G. Amiet and R. Pettit, J. Amer. Chem. Soc., 90 (1968) 1059.
- H. Hoberg, R. Krause-Göring, and R. Mynott, Angew. Chem. Interntl. Edn. Engl., <u>17</u> (1978) 123.
- 3. D.W. Clack, Mol. Phys., 27 (1974) 1513.
- 4. D.W. Clack and K.D. Warren, Inorg. Chim. Acta, 27 (1978) 105.
- 5. D.W. Clack and K.D. Warren, J. Organometall. Chem., 149 (1978) 401.
- M.D. Rausch, R.M. Tuggle, and D.L. Weaver, J. Amer. Chem. Soc., <u>92</u> (1970)
 4981.